
OS Research: A Critical Requirement for HEC Revitalization

Ron Brightwell; 505-844-2099
Principal Member of Technical Staff
Scalable Systems Integration, Sandia National Laboratories, P.O. Box 5800
Albuquerque, NM 87185-1110
bright@cs.sandia.gov

Orran Krieger; 617-693-4374
Research Staff Member and Manager Advanced Operating Systems
IBM T.J. Watson Research Center
Yorktown Heights, NY, 10598
okrieg@us.ibm.com

Arthur B. Maccabe; 505-277-6504
Associate Professor of Computer Science and Associate Director HPC@UNM
Computer Science Department, University of New Mexico
Albuquerque, NM 87131-1386
maccabe@cs.unm.edu

May 16, 2003

In this white paper, we argue that operating
systems are a fundamental technology critical to
the future success of high-end computing (HEC)
systems. We believe that this technology area
has largely been ignored for the past decade and
that this lack of attention has had a direct impact
on the effectiveness of current HEC systems. To
overcome this problem for future HEC systems,
there must be a concerted and coordinated effort
in operating systems research.

The current trend in large-scale HEC systems
is to leverage operating systems developed for
other areas of computing. An informal survey
of the most powerful HEC systems currently de-
ployed1 reveals that all but a few of these ma-
chines run commodity operating systems that

1http://www.top500.org

were not specifically designed for large-scale,
parallel computing platforms.

Since system software is only one component
of a complex HEC system, it is non-trivial to
gather empirical evidence that pinpoints specific
operating system limitations. However, we note
that the Sandia’s ASCI/Red and the Cray T3E
have demonstrated the highest level of scaling
efficiency for several complex scientific applica-
tions and that both of these platforms employed
specialized operating systems on their compute
nodes.

We believe that the current performance and
scalability limitations of HEC platforms are, in
large part, due to a lack of fundamental OS re-
search activities in the previous decade. The OS
research community has become increasingly
stagnant and has had little impact on current-

generation HEC systems.
While we firmly believe in the value of spe-

cialized approaches, we also recognize that spe-
cialized operating systems cannot be sustained
indefinitely. It is therefore important that re-
search in the development of specialized operat-
ing systems be augmented by research that seeks
to consolidate key features of specialized oper-
ating systems with main-stream, commodity op-
erating systems.

The rest of this paper is organized as follows.
We begin by considering the current state of OS
research activities. We then identify key imped-
iments to core OS research and identify OS re-
search problems that are critical for HEC. We
then describe a plan for addressing these prob-
lems. Finally, we describe two related activities.

Current State

Core OS research for HEC systems is essentially
non-existent. This lack of activity in HEC OS
research is largely a consequence of the lack of
core research activity in the broader OS commu-
nity. Current OS research activities are either
focused on incremental changes to existing sys-
tems (e.g., adding transparent support for large
memory pages) or are focused on non-core is-
sues (e.g., file systems). There are only a hand-
ful of small research projects focused on ad-
dressing OS issues for large-scale HEC systems.

In the 90s, the OS research community be-
came marginalized by the growing importance
of commodity operating systems. The rise of
open source operating systems like Linux held
the promise that the community could be revi-
talized. Linux provides a real environment and
could be used for core systems research. Unfor-
tunately, instead of revitalizing the OS research
community, Linux has done just the opposite.

We identify a variety of factors have become
impediments to core OS research:

Services. It is no longer feasible to imple-
ment a special-purpose OS to solve a specialized
set of problems. Users and application develop-

ers increasingly demand the rich set of services–
even when they are working in a highly special-
ized environment like HEC.

Standards. “To be a viable computer sys-
tem, one must honor a huge list of large, and of-
ten changing, standards: TCP/IP, HTTP, HTML,
XML, CORBA, Unicode, POSIX, NFS, SMB,
MIME, POP, IMAP, X, A huge amount
of work, but if you don’t honor the standards,
you’re marginalized.”2. Such work is impossible
in academia and prohibitive in all but the largest
industrial environments.

Application portability. Introducing new in-
terfaces is difficult. Since applications are re-
quired to be portable, modifying them to ex-
ploit a new interface that is not widely support
is nearly impossible.

Benchmarks. Benchmarks are important
driver for every discipline. While it is feasible to
change open source applications for experimen-
tation, complex applications are often difficult
for OS researchers to customize in order to ex-
ploit new interfaces. As a result OS researchers
have often focused on benchmarks that they can
analyze rather than on benchmarks that are rele-
vant to the HEC community.

Hardware access. In the past, changes in
hardware have driven innovation in system soft-
ware. This drive has faltered in the last decade.
Most researchers only have access to sequential
or very small parallel systems. As an example,
the group responsible for developing OSF-1/AD
for the Intel Paragon never had access to a sys-
tem with more than 32 nodes. Given this lack
of a reasonable development environment, it is
not surprising that early versions of OSF-1/AD
failed spectacularly on large systems.

Moore’s law. Performance always has been
and will continue to be central to core OS re-
search. However, Moore’s law has often led
to designs that sacrifice performance for the
sake of additional functionality, since processor

2Rob Pike, “Systems Software Research is Irrelevant,”
http://freshmeat.net/articles/view/175/

2

performance has made OS performance a sec-
ondary concern. This has led to a feedback loop,
where operating systems become more complex
due to inefficient implementation of new fea-
tures, making the task of the operating system
researcher more and more difficult.

Using open source operating systems like
Linux and Free BSD as research platforms
might address these issues; however, these sys-
tems introduce several new problems:

Structure. The internal structure of these
systems makes it difficult to study anything but
incremental changes to the OS. As an example,
there are many thousands of lines of code in
the Linux kernel that understand the socket data
structure. Any research that requires changes to
this data structure is prohibitive. Where Linux
presents a well-defined interface (e.g., Vnode,
Streams, device drivers) there has been a great
deal of innovation. Unfortunately, these inter-
faces are not common in current versions of the
Linux kernel.

Acceptance. A new idea–no matter how ben-
eficial it proves to be–is difficult to get accepted
into standard Linux distributions. While the
community operates as a meritocracy, the metric
is performance on desktops and small servers.
Changes that have any negative impact, even in
the sense of complexity, are not accepted.

Culture. Finally, there is a serious cultural
disconnect between the research community and
the Linux community. The OS research com-
munity was incapable of producing the produc-
tion quality code needed to successfully clone
Unix. As a result, the Linux community tends
to dismiss academic research. They are largely
unaware of, and typically do not cite, the fun-
damental papers that explored the ideas they re-
implement. Without much chance of getting in-
novative ideas accepted into Linux, and without
papers or even attribution, the research commu-
nity will continue to be detached from the Linux
community.

Challenges

Adaptable to radical architecture changes.
The structure of current operating systems sti-
fles hardware innovation. As an example, the
Linux hardware abstraction layer has a multi-
level page table in it that maps directly to the
Intel x86 processor architecture. Linux has been
ported to other architectures by making those ar-
chitectures look like the x86, hiding the advan-
tages of hardware specific features. Over time,
hardware architects have given up innovating in
spaces that would require OS support.

Architectural innovation is critical to HEC.
It has long been projected that Moore’s law is
nearing its end. If this is the case, new archi-
tectural innovation will be needed to find ways
to improve performance. If, on the other hand,
Moore’s law continues for another decade, this
will result in ever increasing memory and I/O
latency. We have probably reached the limit on
what hardware can do to hide this increasing la-
tency, and major innovation in system software
will be required (e.g., prefetching, cache injec-
tion, explicit management of the memory hier-
archy, scheduling tasks without conflicting re-
quirements, collecting all the complex hardware
monitoring information required to drive above
policies).

We can easily project several other areas
of HEC hardware development that will re-
quire fundamental innovation in operating sys-
tems. Examples include multi-processor cores,
processor integrated memory (PIM) architec-
tures, and architectural enhancements to support
power-aware computing.

Support multiple management policies.
The structure of our current operating systems
stifles innovation in application development.
For each resource, the operating system imple-
ments a specific set of management policies.
If the policy implemented does not match the
needs of an application, that application suf-
fers. In many cases, this means that perfor-
mance sensitive applications incur unnecessary

3

complexity to implement their own version of
resource management to match their needs. In
these cases, performance is substantially worse
than if the OS implemented the right policy in
the first place.

Support for specialized HEC needs. The
HEC community often has specialized needs,
and those needs are not met by existing oper-
ating systems. For example, there are currently
several efforts to develop specialized program-
ming models for HEC systems. These new mod-
els may have specialized needs are unlikely to be
met by traditional operating systems.

Support for sophisticated services. The
HEC community requires much more sophisti-
cated OS infrastructure than was needed in the
past. As large systems become more and more
complex, scientists with specialized skills are
less and less capable of efficiently exploiting the
hardware. Moreover, the need for sophisticated
services like visualization requires higher-level
services.

Consolidation with mainstream technol-
ogy. As the need for more sophisticated OS
services becomes critical, it is important that
the operating systems for the HEC commu-
nity converge with the more widely available
commercial systems in order to: 1) exploit the
larger community of programmers available in
the commercial and academic sector, 2) exploit
the programming model and other innovations
that have raised the level of abstraction for pro-
grammers for general purpose systems, 3) avoid
re-implementing the wheel, and 4) enable OS re-
searchers to help the HEC community solve its
problems. Such a convergence will itself require
major innovation in the way in which we design
operating systems.

Support for fault tolerance. We are rapidly
approaching the point where our largest systems
will encounter “interrupts” in standard operation
(i.e., faults). This will require changes at all lev-
els from applications, to runtime systems, to op-
erating systems, to basic hardware structures.

Support for sophisticated security. As HEC

systems are connected to the broader infrastruc-
ture, new applications will demand new innova-
tions, e.g., interactive HEC to run quick param-
eter studies. Effective security will become crit-
ical as highly secure applications are run. Man-
agement of large-scale systems is currently very
complex. As system scale continues to increase,
the simple admission control and other central-
ized servers in our existing HEC systems will be
less and less acceptable.

Proposed Research Structure

With the right investment, the future will not be
as bleak as the past. Linux provides us with a
huge base of code and a critical set of applica-
tions. Linux has also demonstrated the effective-
ness of the open-source model. Moreover, the
interest in Linux has resulted in a large group of
people with OS development skills. The Linux
community has essentially finished the task of
cloning Unix, and new grand challenges appeal
to many leaders in that community. Finally, the
research community is back to doing research
now that the startup phenomena of the 90s is
over.

In putting together an action plan, we focus
on elements that will enable a flourishing re-
search community, not on the government pick-
ing a winner and forcing the community to
adapt it. Previous attempts at early unifica-
tion (e.g., Mach), while well intentioned, have
been counter-productive to the community as a
whole. In broad overview, we propose that the
following steps be taken:

Define interesting problems. It is critical to
provide support to enable OS researchers to be
able to experiment with workloads that are of
interest the the HEC community. This might in-
clude providing benchmark suites and applica-
tions on the web that are simple enough to be
modified but are illustrative of problems impor-
tant to the HEC community. These should in-
clude mixed workloads of interactive and batch
jobs, as well as jobs that stress OS services (e.g.,

4

I/O intensive, short running large jobs). Also,
provide some key application experts that can
help modify critical applications to exploit new
OS interfaces and provide the information OS
researchers need to port these applications to
their platforms. Finally, publish challenges that
will target OS researchers at the important prob-
lems.

Provide testbeds. It is difficult to study the
effects of new and future hardware changes as
well as issues of scale on the systems available
to them. We need to invest in open-source sim-
ulators that provide a good environment for OS
development and that can be used to study the
effects of hardware tradeoffs and the value of
performance monitoring functions on OS pol-
icy. We need to provide both small and large in-
stances of “bootable” systems, available through
the Internet, with the capabilities required to ex-
plore interesting problems. This must include
instances of the largest machines, both SMP and
distributed memory systems.

Fundamental innovations. It is critical to
fund a small number of highly innovative OS
projects that start from scratch. Projects that
componentize OS services, especially in Linux,
are critical. As we have noted, wherever well
defined interfaces exist in Linux a tremendous
amount of innovation has resulted. This might
also include work on very lightweight operating
systems that enable a small number of applica-
tions on experimental hardware.

Low-level mechanisms. Resource protection
and mediation in the presence of competition for
resources are also fundamental to OS research
and need to be supported. With advent of giga-
bit networking technologies, the operating sys-
tem was viewed as the critical bottleneck in the
delivery of bandwidth to the application. Rather
than fix the operating system, developers de-
cided to bypass the OS. While understandable,
this approach means that the OS can no longer
serve its primary role. Examples from our re-
search include the Quintessential kernel (the ba-
sis for Puma) and hypervisors.

Bridge research and development. With-
out the possibility of deployment, OS research
quickly becomes irrelevant. We believe it is nec-
essary to provide a bridge between the Linux
and research communities. For example, have a
team of developers integrated and accepted into
the Linux community that can aid researchers
in getting their innovations deployed. Support
could also be provided for organizing work-
shops and internet forums to pull together Linux
and academic researchers.

Reduce legal barriers. Finally, we believe it
is necessary to reduce the legal barriers. In gov-
ernment procurements, insist on open source.
There also needs to a streamlined process, e.g.,
an appeal body with legal authority to deal with
the intellectual property issues related to the
GNU General Public License (GPL). The law-
suit by the SCO group against IBM for contri-
butions to Linux is having a chilling effect on
the ability of corporations to contribute innova-
tions to open-source. The same large corpora-
tions critical to solve some of the major prob-
lems in OS research are the ones most threat-
ened by litigation.

Related Activities

Two activities, FAST-OS (Forum to Address
Scalable Technology for runtime and Operating
Systems) and DARPA HPCS (High Productiv-
ity Computing Systems), that are relevant. Fred
Johnson at the Department of Energy initiated
FAST-OS in response to the issues we have iden-
tified. This is an important first step, but it needs
to have multi-agency support to ensure continu-
ing relevance and a sufficiently broad mission.

The DARPA HPCS initiative will impact
many of the issues we have identified. Unfor-
tunately, most of the vendors participating in
this initiative have not been involved in FAST-
OS (Cray and IBM are notable exceptions). It
would be a great start if future initiatives explic-
itly called for OS research along with architec-
tural research.

5

